一、传统客服与智能客服过去大部分的ai智能客服都是基于BERT模型,随着ai的快速发展,ai智能客服从底层技术到应用都有了快速突破。 基于BERT模型的智能客服:虽然BERT模型在语义理解方面有一定优势,但由于其更多是“填空题”的模式,对用户Query的理解仍存在不足,回答准确率不足50%,导致很多用户在面对智能客服时会直接输入“转人工”。同时,它主要是基于FAQ进行回复,无法根据用户的情绪变化调整回答方式,无法给到用户情绪价值。 基于大模型深度学习的智能客服:从意识识别到自主行动(问题引导、生成回复、流程控制、闲聊控制、情绪识别),大模型深度学习的智能客服能够全面理解和应对用户的复杂需求。它不仅能够准确理解用户的语义和情感,还能根据用户的上下文信息和历史行为,生成更加个性化和精准的回复。此外,大模型还具备强大的自我学习能力,能够不断优化自身的知识库和服务流程,提高服务质量和效率。 二、零售O2O智能客服分析与调研2.1 场景分析要进行智能客服的场景分析,首先需明确客服的场景分析框架。 我们可从以下视角思考:用户是谁,用户的生命周期是怎样的,用户的消费旅程节点有哪些;业务场景范围涵盖哪些方面,交互的形式有哪些,用户反馈的客体(反馈内容)是什么,客体状态(反馈内容的状态)是什么。 基于此,我们至少可以从两大核心视角进行深入思考:一是从用户旅程出发,二是从智能客服管理的角度,明确人工智能应用的重点场景,即并非所有场景能完全适用人工智能,挑选出重点场景方向,才能事倍功半。 以下仅为通用性场景假设,具体需根据实际业务具体分析: 假定处于有门店销售的 O2O 场景之下,基于用户旅程视角,第一步需要厘定大致的用户旅程节点,以及各节点衍生出的触点与对应的用户行为。顺着这些节点脉络,明确客服的角色和职责。部分节点,诸如进店、与店员互动环节,客服暂且无需介入;而在客服需要参与到消费者旅程节点,客服的参与程度深浅不一。举例来说,在售前咨询、自动外呼营销阶段,客服发挥着关键效能,参与力度较大;而在支付交易以及物流环节,客服主要活跃于事后的售后交易阶段,聚焦交易问题、物流信息查询等场景,与客户展开互动交流。 总体而言,基于消费者旅程,可大致划分为售前、售中与售后三大阶段:
这里更佳的做法是将用户触点&用户行为&客服行为&客服职责&客服okr量化指标结合,由于需要根据实际情况进行分析,下表并未将okr指标一一对应。 前文已详尽阐述基于用户旅程智能客服的参与场景,接下来从智能客服管理视角深入剖析智能客服场景,具体如下: 1)业务场景维度:
2)交互场景维度:
3)客体状态维度(反馈内容的状态):
4)客体类型维度(反馈内容的类型):
2.2 业务流程前文基于场景的分析,相当于从宏观放大镜的视角分析,而业务流程分析,则直接聚焦在客服业务,从受理前、受理中、受理后对客服业务流程进行梳理:
2.3 需求分析基于前文的场景分析和客服业务流程分析,从宏观角度与直接聚焦在客服业务,充分分析人工智能对客服业务的需求支撑,下图蓝色的标记为主要的人工智能设计的范围,根据实际业务需求进行优化,下图仅为示例。 核心需求可以在一定程度上归纳为多(知识库覆盖多,识别客户意图更准)、快(流程顺畅、回复效率高)、好(识别客户情绪,满足客户需求)、准(回答专业度,准确性) 2.4 技术流程1)智能客服服务流程
2)智能客服运营流程
2.5 产品定位一款基于大规模深度学习的智能客服平台,对客户,实现个性化服务,助力企业降本增效,提升客户满意度。对客服管理,实现内部管理的高效协同与提质增效。 2.6 目标与衡量标准1)成本效益指标(示例,根据实际情况调整)
2)运营类指标(示例,根据实际情况调整)
三、ai智能客服行业的主要厂商和产品四、ai智能客服系统架构4.1 业务架构4.2 系统架构智能客服系统需要根据实际情况选择设计功能模块,以下是比较主流的功能模块:
五、基于AI大模型的智能客服搭建(以知识库为例)由于本文篇幅关系,无法全面分析基于人工智能的智能客服搭建方式,所以选取了一个较为典型的功能模块,即基于AI大模型的知识库,通常知识库的底层能力是基于通用性的大模型底层能力的,但由于行业的特性和客户特征,大多数会外挂行业知识库等进行语料喂养。那么基于AI大模型的智能客服搭建知识库流程总体是什么样的呢,下面将进行简要描述。 5.1 AI智能客服知识库1)确定范围与数据处理
2)提升理解与模型选型 (1)模型选型 langchain 框架等是比较主流的框架。提供便捷工具和接口,能灵活整合语言模型、外部数据源及各类组件,高效搭建智能客服系统架构,满足业务特定需求。 (2)能力提升
3)知识库构建与调优 (1)策略技术
(2)具体操作
4)灰度发布与上线 (1)小范围测试与反馈收集 正式上线前,选择特定小范围用户群体或部分业务场景测试。通过问卷、访谈、数据统计等方式收集用户对智能客服回复准确性、及时性、友好性的反馈,整理分析后作为优化依据。 (2)性能监控与保障上线 实时监控系统稳定性、可靠性和响应速度等性能指标,利用监控工具及时发现并解决性能隐患,确保系统能满足大规模用户使用需求,顺利全面上线 。 5.2 知识库索引与召唤描述针对智能客服知识库的搭建,知识库搭建索引能有效提升知识库效能,提供了快速检索的能力,提高数据检索的效率,使得在用户提出问题时,系统能够快速地从知识库中找到相关信息,索引过程包括实体抽取、实体关系确定、实体摘要,以及构建向量数据库和图数据库,这些都是为了优化数据的检索性能。索引为召回打下了基础。召回实现为了提供给用户最相关、最准确的答案或信息。 召回过程包括召回前处理(如问题扩散、意图识别)、召回中处理(如选择目标知识库、向量相似度计算、图谱召回、召回排序),以及召回后处理(如生成质量评分器、Token压缩、生成回复、敏感词混淆处理) 1)搭建索引
2)召回流程 召回前处理:
召回中处理:
召回后处理:
通过这样的流程,智能客服系统能够提供给用户最相关、最准确的答案或信息,实现快速、准确的客户服务体验。 作者:Elaine.H ,公众号:H小姐的数字化杂货铺 本文由@Elaine.H 原创发布于人人都是产品经理,未经作者许可,禁止转载。 题图来自Unsplash,基于CC0协议。 该文观点仅代表作者本人,人人都是产品经理平台仅提供信息存储空间服务。 |